Closing Wed: \quad HW_8 (8.3)
Closing Next Wed: \quad HW_9A, 9B, 9C
Midterm 2 will be returned Tuesday
9.1 Intro to Differential Equations
Goal: See a few differential equations and understand what a solution is.

A differential equation is an equation involving derivatives.

Notes:
$\frac{d y}{d t}=$ "instantaneous rate of change of y with respect to $t "$
" A is proportional to B " means
$A=k B$, where k is a constant.
In other words, $A / B=k$.

A survey of 4 applied examples:

1. Natural Unrestricted population

Assumption: "The rate of growth of a population is proportional to the size of the population."
$\mathrm{P}(\mathrm{t})=$ the population at year t,
$\frac{d P}{d t}=\quad$ the rate of change of the population with respect to time (i.e. rate of growth).

So the assumption is equivalent to the differential equation

$$
\frac{d P}{d t}=k P
$$

for some constant k
(we call k the relative growth rate)

2. Newton's Law of Cooling

Assumption: "The rate of cooling is proportional to the temperature difference between the object and its surroundings."
$T_{S}=$ constant temp. of the surroundings
$T(t)=$ the temp. of the object at time t,
$\frac{d T}{d t}=$ the rate of change of the temp
with respect to time (i.e. rate of cooling).
$T-T_{S}=$ temp. difference between object and surroundings.

So Newton's Law of Cooling is equivalent to the differential equation

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

for some constant k (cooling constant).

3. All motion problems!

Consider an object of mass $m \mathrm{~kg}$ moving up and down on a straight line.
Let $\mathrm{y}(\mathrm{t})=$ 'height at time t^{\prime}

$$
\begin{aligned}
& \frac{d y}{d t}=\text { 'velocity at time } t^{\prime} \\
& \frac{d^{2} y}{d t^{2}}=\text { 'acceleration at time } t^{\prime}
\end{aligned}
$$

Newton's $2^{\text {nd }}$ Law says:
(mass)(acceleration) = Force
$m \frac{d^{2} y}{d t^{2}}=$ sum of forces on the object
Only taking into account gravity:

$$
m \frac{d^{2} y}{d t^{2}}=-m g
$$

Consider gravity and air resistance (the force due to air resistance is proportional to velocity):

$$
m \frac{d^{2} y}{d t^{2}}=-m g-k \frac{d y}{d t}
$$

4. A Mixing Problem

Assume a 50 gallon vat is initially full of pure water. A salt water mixture is being dumped into the vat at $2 \mathrm{gal} / \mathrm{min}$ and this mixture contains $3 \mathrm{~g} / \mathrm{gal}$. The vat is mixed together.
At the same time, the mixture is coming out of the vat at $2 \mathrm{gal} / \mathrm{min}$.

Let $\mathrm{y}(\mathrm{t})=$ grams of salt in vat at time t.
$\frac{y(t)}{50}=$ salt per gallon in vat at time, t.
$\frac{d y}{d t}=$ the rate $(\mathrm{g} / \mathrm{min})$ at which salt is changing with respect to time.

RATE IN $=(3 \mathrm{~g} / \mathrm{gal})(2 \mathrm{gal} / \mathrm{min})=6 \mathrm{~g} / \mathrm{min}$ RATE OUT $=\left(\frac{y}{50} \mathrm{~g} / \mathrm{gal}\right)(2 \mathrm{gal} / \mathrm{min})=\frac{y}{25} \mathrm{~g} / \mathrm{min}$

Thus,

$$
\frac{d y}{d t}=6-\frac{y}{25}
$$

General Notes about Differential Equations

A solution to a differential equation is any function that satisfies the equation.

Consider the differential equation:

$$
\frac{d P}{d t}=2 P
$$

(a) $P(t)=8 e^{2 t}$ is a solution because

$$
\frac{d P}{d t}=16 e^{2 t} \text { and } 2 P=16 e^{2 t}
$$

(b) $P(t)=t^{3}$ is NOT a solution because

$$
\frac{d P}{d t}=3 t^{2} \quad \text { and } \quad 2 P=2 t^{3}
$$

(c) $P(t)=0$ is a solution because

$$
\frac{d P}{d t}=0 \quad \text { and } \quad 2 P=0
$$

(d) The general solution to

$$
\frac{d P}{d t}=2 P
$$

is

$$
P(t)=C e^{2 t}
$$

$$
\text { for any constant } \mathrm{C} \text {. }
$$

We will learn how to find this next time.

Consider the differential equation:

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

(a) Is $y=e^{-2 t}$ a solution?
(b) Is $y=t e^{-t}$ a solution?
(c) There is a sol'n that looks like $\mathrm{y}=\mathrm{e}^{\mathrm{rt}}$.

Can you find the value of r that works?

